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correlation 
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Abstract. We report a fully self-consistent calculation of the third-order Kerr polarisation in 
small metal spheres embedded in a dielectric medium. The random phase approximation 
with exchange is used leading to a fully symmetric expression accounting for the non-locality 
of the electronic response as well as exchange and correlation. This treatment generalises 
the results reported in a previous paper by Hache et al. The expression of the octupolar 
component of the charge density is also given. 

1. Introduction 

The linear optical properties of small metal particles have been extensively studied [ 11. 
The connection between the absorption spectrum of a metal colloid and the surface 
plasma resonance [2-41, as well as the broadening of the absorption band when the size 
of the particles is reduced [5-71 have given rise to a large number of publications. 
The calculations were first performed assuming independent electrons in the local 
approximation [8-101 but later papers gave improved treatments taking into account 
the non-local character of the electronic response [ll-131. A more general situation, 
including exchange and correlation effects in the calculation of the dynamical polaris- 
ability, has also been considered [14]. 

On the other hand, and more recently, we have performed the first experimental 
studies of non-linear optical properties (the optical Kerr effect) of gold and silver 
colloids [15-171 using optical phase conjugation in the degenerate four-wave mixing 
configuration. A resonant enhancement of the non-linearity was observed in the vicinity 
of the surface plasma resonance. The enhancement was first interpreted as a local field 
effect [ 151, the local field correction being derived from an effective dielectric constant 
formalism [3] from which the four factors fi(o), wherefl is the ratio between the field 
inside and outside the sphere, usually entering the expression of the third-order Kerr 
non-linear source polarisation PNLs (w) are easily recovered. Of course, such a treatment 
was obtained assuming a local response of the electrons, the metal sphere being charac- 
terised by a dielectric constant ~~(0). 

We have recently published [ 181 an improved treatment taking into account the non- 
locality of the electronic res onse, at least in its most important aspects, obtaining a self- 

(3) 

consistent expression for PNLs K (U). In the present paper, we will refer to [18] as paper I. 
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The central result, embodied in (43) of I, clearly shows how the externally applied 
potential is modified and how a fourth factor enters when one examines the field 
generated outside the sphere by the non-linear polarisation. A numerical comparison 
between this non-local and the local treatment shows that the consequences of non- 
locality may be important for very small metal particles [I]. Of course, the local treatment 
in which the local field factors and the non-linear susceptibility of the metal factorise 
provides a solid first approximation, especially in the case of intermediate-sized particles 

Nevertheless, a self-consistent treatment taking non-locality into account is pref- 
erable. From this viewpoint, I suffers from two shortcomings. First, the non-linear 
charge density 6 ~ ' ~ )  is replaced by an equivalent dipole located at the centre of the 
sphere. And secondly, exchange and correlation effects are not taken into account. The 
purpose of the present paper is to generalise the treatment given in I by treating the non- 
linear charge density as such and by taking into account exchange and correlation. As 
in I, the charge density susceptibility formalism is applied within the random phase 
approximation (RPA). A jellium model with infinite barriers will be used to describe the 
electronic properties of the metal [11, 191. Furthermore, exchange and correlation will 
be introduced within the local density approximation (LDA) as proposed by Zangwill 
and Soven [20]. 

In 0 2, the linear response of a spherical particle is treated using the same formalism 
as in I but with due account of exchange and correlation. In § 3, the dipolar part of 
the non-linear response is handled along the same lines, leading to a fully symmetric 
expression for P$LS(u) ,  fully generalising the four local field factors of the local treat- 
ment. Section 4 is devoted to a numerical application exemplifying the role of exchange 
and correlation. The non-linear charge density is also comprised of an octupolar term 
whose contribution is utterly negligible but whose expression will be given for com- 
pleteness in the appendix. 

~ 7 1 .  

2. Linear response 

We first consider the linear response of a metallic sphere of radius a embedded in a 
dielectric medium with real dielectric constant ~~(0). An external electric field E given 
by 

E = [E,(w) eiWt + ccle, (1) 
where e, is the unit vector of the Oz axis is applied to the system. The wavelength A 
of this field is assumed to be large compared with the sphere radius a so that the 
electrostatic approximation is valid and the external field appears as the gradient of the 
potential GO(r) 

GO(r)  = - E o ( o ) r  cos 6 (2) 
where 8 = (e,, r). We denote 4 l(r)  and G2(r)  the effective potentials inside and outside 
the sphere. 

Following the LDA, q5 is written 

GI(.) = Go(4 + G C ( 4  + G X C W  

where GC is the coulombic potential due to the charge density 6p 

(3) 
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V being the volume of the sphere. The sum of @,, and @ c  is the true electric potential 
(pl(r) whereas the last term in (3) 

takes exchange and correlation into account [20]. We thus have 

@ l W  = 6k) + @ x c ( r ) .  (6) 

All functions g(r) involved in this and the following section (dipolar terms) are of the 
form 

g(r> = g(r)G(e, q) (7) 

g(r)  = g(r7 9) = Bkjl(kr)Y!(e7 q ) g ( k )  (8) 

and for r < a ,  are then expanded [21] as in I 

k 

where j, is the spherical Bessel function of first order and the k are chosen so that 

The constant Bk is given by 

Bk = {2a-3[j:(ka) - jo(ka)jz(ka)]-1)1/2 

and the inverse transform is 

In the framework of the RPA with exchange, we can write the induced electric charge 
density 6p(r7 w) as 

where xs is the linear density-density response function. Transforming (12) in the k 
representation, we get 

6p(k7 = 2 X$(k7 k’> w)@1(k’7 w, (13) 
k’ 

where 

XS ( k ,  k’ 0) = Bk Bk, 1 d rdr’j1 (kr)ji (k’r ’ )  y? (8 ,  q) G (e’,  q ’)Xs (r7 r’ 0 ) .  (14) 

Using ( 5 ) ,  (13) becomes 
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Defining the matrix A 

equation (15) reads 

A6P = X S 6 1  
leading to 

6 p ( k ,  W )  = 2 Xs(k ,  k ' ,  m)$i (k'7 U )  
k' 

where the modified susceptibility is is defined as 

i s ( k ,  k ' ,  o) = E A - ' ( k ,  k ,  o)xs(k", k ' ,  U).  
K' 

We may note that the matrices xs and A are symmetric and commute, so that is is 
symmetric and it can easily be shown that 

where I is the unit matrix. 
The self-consistency of the problem is obtained from the Poisson equation 

A 6 1  ( Y ,  U )  = - - 4 ~ S p ( r ,  W )  (21) 

which, in the k representation, reads 

Bk lV dr j l (kr)Y?(o ,  q ) A r $ 1 ( r 7  w, = -4n6p(k, 0). (22) 

The left-hand side is transformed using the second Green identity [I] and, using (18), 
(22), is solved for $'(k,  U).  

$ l ( k 7  U )  = $ ; ( a ,  U )  Bk,a2j l (k'a)%'(k,  k ' ,  U )  (23) 

%(k,  k ' ,  0) = k26kp - 4 n i s ( k ,  k ' ,  U).  

61(r, 0) = $ ; ( a ,  4w, ( m r ,  (25)  

$(Y, w )  = a2 BkBkrj l (kr) jI(k'a)%'(k,  k ' ,  w).  (26) 

k' 

where % is the symmetric matrix 

(24) 

Returning now to the r representation, we get 

with 

k ,  k' 

The potential outside the sphere is 

G2G.9 = Go@., 0) + G2r(r,  

where the response potential QZr can be written 

(27) 
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The boundary conditions at r = a apply to the electric part of the potentials, i.e. to &1 

and @*, leading to the solution 

- 4n 3a&,(w> 
@ ! ( a ,  W )  = - E o  - d- 3 U + 2&,(w)%(a7 0)‘ 

We now derive the expressions for ql(r, w )  which acts as the effective potential in 
(12). From (6) 

= 41(r> O> + 2 i, dr’xs(r, r ‘ ,  w)41(rt, (30) 

or, in the k representation, 

(31) 
(3 vx, 

@ i ( k , w ) =  & i ( k , w ) + - C , x s ( k , k ’ , w ) 4 1 ( k ’ , w )  
ap k’ 

whose solution is 

@ i ( k , w ) = C , A A - ’ ( k , k ’ , w ) 4 i ( k ’ , W )  (32) 
k’ 

or 

G 1 ( k ,  U )  = a 2 $ i ( a ,  W )  C, BFj,(k”u) C , A - ’ ( k ,  k ’ ,  o ) % - ’ ( k ’ ,  k ,  U). 
K‘ k’ 

(33) 

(34) 

Defining 

Z ( k ,  k ’ ,  U )  = z % ( k ,  k 7  w)A(k”,  k ,  U )  
I? 

and back in the r representation, we get 
- 

@1(r, 0) = & X U >  w>%, 4 y m  
with 

&(Y, U) = a2 B k B k , j l ( k r ) ~ l ( k ’ a ) ~ - l ( k ,  k ’ ,  U).  
k .  k ’  

(35) 

(36) 

3. Non-linear response 

Among the third-order effects, we concentrate on the degenerate optical Kerr effect 
with terms oscillating at the frequency w .  In the framework of the charge density 
susceptibility formalism, the internal potential @ * ( r ,  w )  induces a non-linear variation 
of the electronic charge density 

6p(3)(r7 w )  = jjjv d r ,  d r 2  dr3P~P+P+P(r ,  r l ,  r 2 ,  r 3 ,  w ,  -CO, W )  
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where PxP+P+Pis the third-order density susceptibility. The angular dependence of 
is cos38 which, since 

cos3 e = p1 (cos e )  + gp3 (COS e 
where the P,, are the Legendre polynomials, means that 6 ~ ‘ ~ )  is comprised of a Yy 
(dipolar) term and a f l  (octupolar) one. In this section, we concentrate on the dominant 
dipolar term (the octupolar one is considered in the appendix) and use the same expan- 
sion as in 0 2. 

The presence of 6 ~ ‘ ~ )  slightly modifies the linear density to 60, the internal potential 
to $1, with its pure electric part 61. Equation (15) is modified to 

leading to 

Using Poisson’s equation 

A41(r ,  w )  = - 4 ~ [ 6 P ( r ,  O) + 6 p ( 3 ) ( r ,  U ) ]  

- k2;1(k,  w )  + 4n[6P(k, 0) + 6p‘3’(k,  U) ]  + Bka*j l (ka)F;(a,  0) = 0 

(40) 

and proceeding as in § 2, we get 

(41) 

whose solution is, using (39) and (20), 

;1(k, 0) = 2 a2Bk,jl(k’U)%l(k, k ’ ,  @); ; (a ,  U )  
k’ 

+ 4n 2 % - l ( k ,  k ’ ,  w ) A - l ( k ’ ,  k ’ ,  ~ 0 ) 6 p ( ~ ) ( k ” ,  w )  
k ’ . k  

which may be rewritten, since % and A are symmetric, as 

F l ( k ,  w )  = a 2 J ; ( a ,  w )  2 B k n j l ( k ’ a ) Z - ’ ( k ,  k ’ ,  O) 
k’ 

Back in the r representation, we get for G l ( a ,  w )  which is the quantity we need for the 
boundary conditions: 

The first term on the right hand side of (44) leads to the same response potential 
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GZr as previously (see (28)) whereas the non-linear charge density (the second term) 
generates an extra potential @2m(r, w )  outside the sphere of the following form: 

where AI is calculated using the boundary conditions 

@2m may be considered as being generated by a non-linear dipole moment mNLs(w) 

(3) Now, the non-linear source polarisation P N L ,  (U )  of a composite medium containing N 
spheres per unit volume is 

P g s ( w )  = N ” L S ( o )  (48) 
and using (46), (37 ) ,  (35) and (29) ,  we obtain the central result of this paper: 

x P ~ P + P + P  (r,  rl , r 2 ,  r 3 ,  w ,  - w ,  w> 5 ( r ,  co)5(rI , w>G*(r2 , w>@(r3 , w )  

x COS e COS el COS e2 COS e3 / E , ( w ) ~ ~  &,(CO). (49) 
This expression is completely self-consistent and takes exchange and correlation into 
account through the matrix A .  It clearly shows how the applied potential is multiplied 
by the correction factor 

3 a e 2 ( o >  4 < r ,  w )  
a + 2 ~ , ( w ) % ( a ,  U )  r 

and how the fourth (identical) factor is introduced, leading to a fully symmetric result, 
which was not the case with (43) of I. The only approximations involved in the present 
calculation are the RPA, the LDA and the infinite barrier. Of course, to proceed further, 
a tractable expression for p x P + P + P  is required. It could for example be calculated 
following the density-functional formalism proposed by Senatore and Subbaswamy 
[22]. Equation (49)  contains as limiting cases: the treatment neglecting exchange and 
correlation, the homogeneous non-lccal (Lindhard [23]) case and the local case. In the 
local case for example, %(r, w )  and $(r,  w )  are equal to r / q ( w ) .  

4. Numerical application 

The linear response, as well as the non-linear response of a small metal particle, involves 
the ‘local field factor’ which connects the outer and the mean inner electric field. This 
factor is very important since it is at the origin of the surface plasmon resonance which 
gives rise to an absorption peak in metal colloids. Due to the occurrence of this factor 
at the fourth power in its expression, the non-linear response is also drastically increased 
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Figure 1. Modulus, real part and imaginary part of the 'local field factor' as a function of the 
frequency: non-local calculation with (fiyc: full curves) and without (fi: broken curves) 
introduction of exchange correlation. 

at this resonance frequency. In the case of very small spheres (a few tens of angstroms), 
this resonance frequency is very sensitive to non-local effects and, in this section, we 
calculate numerically this factor as a function of the frequency of the electromagnetic 
field with and without introducing the exchange-correlation potential. In the first case, 
we have: 

3@a, 0) 
f l x c  = a + 2 ~ ( a ,  o) 

and in the second case (I): 

3 9 ( a ,  0) 
fl = a + 2 9 ( a ,  0) 

where 

%(r ,  0) = U* 2 BkBk,; l (kY); l (k'U)ce~'(k,  k ' ,  0). 
k ,  k' 
- 

To calculate 9, $, and @, we use the non-local homogeneous approximation for 
which the matrix 8 (equation (16) of I) reads: 

8 ( k ,  k ' ,  0) = k 2 & ( k ,  0 ) 6 k , k ' .  

We use for ~ ( k ,  0) the exact expression of the Lindhard dielectric constant [23] and 
perform the summation over 20 values of k .  We have followed Zangwill and Soven [20] 
to introduce the exchange-correlation potential with, in the case of gold or silver, r, = 
3. Figure 1 shows the factorsflx, (full curves) andfl (broken curves) as a function of the 
frequency 0 for a 10 A metal sphere. The surface plasmon resonance appears quite 
clearly. Before commenting on these curves, let us recall that the non-local calculation 
leads to a blue shift of this resonance: indeed, with a local calculation, the resonance 
occurs at 7.95 x 1015 s-'. The magnitude is also reduced (by nearly a factor of 2). We 
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can see in figure 1 that the introduction of an exchange-correlation potential slightly 
shifts the resonance towards the high frequencies, increasing the non-local blue shift, 
whereas the amplitude of the resonance is increased, reducing the decrease observed in 
non-local calculations. Though rather weak, the effect of exchange correlation should 
be taken into account in a careful analysis. 

5. Conclusion 

In summary, we have extended the previous results obtained in I by giving a complete, 
fully symmetric self-consistent expression for the third-order non-linear polarisation 
PcLs(w) of a metal colloid within the random phase approximation with exchange. We 
thus allow for the non-local response of the electrons in the metal sphere and also 
take exchange and correlation into account within the local density approximation 
framework. The properties of the electron gas then enter through the density-density 
susceptibility xs(r, r ' ,  U) and the exchange-correlation potential 8 Vx,/8p. The result we 
thus obtain is fairly general. 

Appendix 

The self-consistent problem and the boundary conditions being linear, the octupolar 
part of 6 ~ ' ~ )  may be treated independently. Since now the relevant functions are of the 
form 

they can be expanded, when r < a, as 

wherej3 is the spherical Bessel function of third order and the h are chosen so that 

[ylx=,, = 0. 

The constant ch is 

and the inverse transform is 

(A31 

The susceptibility xi (h, h' ,  w) is defined similarly to xs(k,  k ' ,  0): 
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Xj(h,  h’, w )  = ChChr 

and the quantities equivalent to % and @ are denoted 
is obtained from the potential outside the sphere which is of the form 

drdrrj3(hr)j3(h’r’)Y;(B, q ) H ( O r ,  q r ) x S ( r ,  r ’ ,  W )  (A6) 

and G. The octupolar moment 

il 

The octupolar density O { i s ( w )  = NoNLS is then obtained as 

x COS el  COS e2 COS o3 po(~)12 E,(@). (A8) 
The octupolar contribution to the radiated wave is much weaker than the dipolar 

one first because of a factor K*U’ where K = 2n/A in the equivalent source term and 
secondly because the fourth factor which appears in (A8) is not resonant at the same 
frequency as the other three. In the local approximation, g ( r ,  U) and g(r,  w )  reduce to 
r 3 / 3 ~ 1  (u )a2 .  
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